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ABSTRACT
We present velocities for 230 stars in the outer parts of the globular cluster M15 measured with the

Hydra multiÐber spectrograph on the 3.5 m WIYN telescope. A new Bayesian technique is used for
analyzing the data. The mean velocity of the cluster is [106.9^ 0.3 km s~1. Rotation with an ampli-
tude of 1.5 ^ 0.4 km s~1 and a position angle of 125¡ ^ 19¡ is observed, and a model including rotation
is marginally favored over one without rotation. The velocity dispersion decreases from the center out to
about 7@ and then appears to increase slightly. This behavior is strikingly di†erent from the continued
decline of velocity dispersion with increasing radius that is expected in an isolated cluster. We interpret
this as an indication of heating of the outer part of M15 by the Galactic tidal Ðeld.
Key words : globular clusters : individual (M15) È methods : statistical

1. INTRODUCTION

1.1. T heoretical Background
A full understanding of globular cluster dynamical

evolutionÈincluding the core-collapse process and its
aftermathÈrequires that global dynamical models be Ðtted
to global data sets. In close analogy with the strong coup-
ling between a stellar core and envelope, there is a strong
interaction between the core and halo of a globular cluster.
For both stars and clusters, the energy transport rate in the
outer parts determines the time-averaged rate of energy
generation in the core et al. In clusters, star-star(Hut 1992).
gravitational scattering is the energy transport mechanism
and hard binaries are the central energy source.

Over the past few years, we have Ðtted isotropic Fokker-
Planck models to the surface density and velocity disper-
sion proÐles of several collapsed-core clusters, including
M15 et al. et al. NGC 6624(Grabhorn 1992 ; Dull 1997),

et al. and NGC 6397 We(Grabhorn 1992), (Drukier 1995).
have recently extended our Fokker-Planck approach to the
accurate treatment of an anisotropic velocity distribution

et al. This will allow us to produce fully(Drukier 1997).
global models that include the radial orbit bias that
develops in cluster halos. Fitting dynamical models depends
crucially on the availability of kinematic data, since surface
brightness or star count proÐles alone do not strongly con-
strain such important parameters as the mass functionÏs
slope or the total cluster mass.

In addition to evolving as a result of internal energy
transport, clusters also respond to external tidal pertur-
bations from interactions with the Galaxy. Such pertur-

in this paper contains the velocities of the 230 stars deemed to1 Table 2
be members of the cluster. A table of 361 nonmember stars with velocities
will not be published ; this table and are both available electron-Table 2
ically from the Astronomical Data Center (ADC). The ADCÏs Internet site
hosts WWW and FTP access to the ADCÏs archives at the URL
http ://adc.gsfc.nasa.gov.

bations include shocks caused by the clusterÏs passage by
the bulge or through the disk and a steady tidal acceleration
from the smoother halo potential. In both cases, there is
energy input to the cluster, producing a ““ heating ÏÏ e†ect,
although the latter is usually treated as a boundary condi-
tion causing the clusters to lose mass. While the energy is
primarily deposited directly in the outer part of the clusterÏs
mass distribution, as was Ðrst demonstrated by &Spitzer
Chevalier the evolution of the entire cluster is(1973),
a†ected. In particular, tidal shocking tends to accelerate
core collapse.

The extent of tidal heating and its e†ect on the evolution
of a cluster has been of continuing theoretical interest. A
particular motivation is that tidal heating appears to be a
major contributing factor to the destruction of globular
clusters Hut, & Ostriker & Tosa(Aguilar, 1988 ; Okazaki

& Hawley & Ostriker1995 ; Capriotti 1996 ; Gnedin 1997).
& Ostriker have given the most recent theo-Kundic� (1995)

retical analysis of the expected heating of globular clusters
by tidal shocks. They have shown that the second-order
tidal shock relaxation term, neglected in many previous
studies, is usually more important than the Ðrst-order term,
both for the impulse and adiabatic approximations.

demonstrated that the usual adiabaticWeinberg (1994)
approximation does not apply in a three-dimensional
potential, and this has been included in the analysis of

& Ostriker From their analysis, it appearsKundic� (1995).
that tidal e†ects are locally important as far into a cluster as
the half-mass radius.

Of particular relevance for comparison with the obser-
vations of the global velocity dispersion proÐle of M15 pre-
sented here are models for cluster evolution that include
tidal e†ects. What are needed are numerical predictions
with which to compare our velocity distribution observ-
ations. Unfortunately, most papers dealing with this have
failed to provide an analysis that may be directly compared
with the usual velocity dispersion proÐle determinations.
One exception is & Richstone This study,Allen (1988).
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which looked only at the Ðrst-order e†ect, found that the
velocity dispersion increases for the escaping stars found in
the outermost part of a cluster. They determined the tidal
radius by the minimum in the velocity dispersion proÐle.
This tidal radius and the di†erence between the radial and
tangential velocity dispersion proÐles depended on the
nature of the assumed cluster orbit. & Lin presentOh (1992)
a hybrid approach, which uses a Fokker-Planck approach
for treating internal relaxation (using the second-order
Fokker-Planck terms only) and direct orbit integration for
including the e†ects of the tidal Ðeld. However, they do not
provide results for the evolution of the velocity dispersion
proÐle.

1.2. Observational Background
As the prototypical collapsed-core globular cluster, M15

has received considerable observational attention. Recent
Hubble Space Telescope (HST ) imaging studies have probed
the stellar distribution in the central region with increas-
ingly higher angular resolution et al. De(Lauer 1991 ;
Marchi & Paresce et al.1994, 1995 ; Guhathakurta 1996 ;

& King The current consensus of this work isSosin 1997).
that the surface density proÐle of M15 has a central power-
law form, with no clear evidence for a resolved core. The
tightest upper limit on the core radius is & King1A.5 (Sosin

These results have been combined with ground-based1997).
surface brightness measurements Cohn, & Grind-(Lugger,
lay and star counts et al. to generate a1995) (King 1968)
global surface density proÐle for Fokker-Planck model Ðts

et al. The structure of the outermost region of(Dull 1997).
M15 has recently been studied by et al.Grillmair (1995).
They carried out two-color stellar photometry using digi-
tized Schmidt plates and used the color-magnitude diagram
to statistically correct for foreground contamination, thus
allowing them to map out the large-radius density proÐle of
the cluster. They found an apparent tidal radius of 23@ for
M15, based on a model Ðt. They also found anKing (1966)
excess population of cluster stars beyond this radius, which
they interpreted as a tidal tail.

A number of studies have been carried out over the past
decade to determine the velocity dispersion proÐle of M15

Seitzer, & Cudworth Gebhardt et al.(Peterson, 1989 ; 1994,
et al. These studies have all concentrated1997 ; Dull 1997).

on the central region of the cluster. The greatest radial o†set
for any star in the et al. sample is thePeterson (1989) 4@.6 ;
other studies surveyed the central 1@È2@ radius about the
cluster center. et al. and et al.Peterson (1989) Dull (1997)
used long-slit spectroscopy, while Gebhardt et al. (1994,

used Fabry-Perot imaging spectrophotometry to scan1997)
the Ha line.

The key Ðnding by et al. is that the veloc-Peterson (1989)
ity dispersion proÐle of M15 rises rapidly toward the cluster
center. While subsequent studies by Gebhardt et al. (1994,

and et al. conÐrm the rising nature of the1997) Dull (1997)
proÐle within the central arcminute, these recent studies,
plus that Meylan, & Mayor obtainedDubath, (1994),
central velocity dispersions between 11 and 14 km s~1,
much less than the 25 km s~1 found by et al.Peterson

As discussed by et al. the global surface(1989). Dull (1997),
density proÐle of M15 and the velocity dispersion proÐle
out to about 4@ are well Ðtted by a Fokker-Planck model
that contains a substantial, centrally concentrated popu-
lation of nonluminous remnants, presumably neutron stars.
Multimass King-type models do not provide as good a joint

Ðt to the surface density and velocity dispersion proÐles
et al. & King(Dull 1997 ; Sosin 1997).

In this study, we present the Ðrst velocity information for
the outermost region of M15. The 230 cluster members
identiÐed in our sample lie primarily in the range 1@[16@.6
from the cluster center. Thus, our work complements that of

et al. who have presented velocities forGebhardt (1997),
1534 stars that primarily lie within of the cluster center.1@.5
Our median velocity accuracy is 0.3 km s~1 ; the velocity
accuracies for the et al. sample vary over aGebhardt (1997)
range of 0.5È10 km s~1.

In we describe our observations and present our° 2,
velocity measurements. Our analysis technique, which is
new for this application, uses Bayesian statistical methods.
These are described in gives our analysis of the° 3 ; ° 4
velocities of the members. In we interpret our results in° 5,
the context of models for clusters evolving under the inÑu-
ence of tidal e†ects.

2. DATA

2.1. Observations
All of the new observations discussed here were obtained

using the Hydra multiÐber spectrograph on the 3.5 m
WIYN This instrument has 100 Ðbers that cantelescope.2
each be placed within the 1¡ diameter observing Ðeld to 0A.2
precision. The minimum Ðber separation is 36A, so while the
central of the cluster cannot be efficiently observed, this0@.5
instrument is ideal for observing the outer regions of globu-
lar clusters. We were able to observe up to 80 stars at a time.
For all observations we used the echelle grating with an
order centered at 515 nm, in the neighborhood of the Mg b
lines. Approximately 20 nm of the order was imaged on the
2048 pixelÈlong CCD, for a dispersion of about 0.01 nm
pixel~1. The comparison source was a ThAr lamp.

Use of the Hydra spectrograph requires accurate posi-
tions for the stars to be observed. The positions of the stars
came from two sources, a 3 ] 3 mosaic of Curtis-Schmidt
frames in V and I and a list from K. Cudworth of the stars
on his M15 proper-motion program. This list Ðlled in the
center of the cluster, which was too crowded on the Schmidt
frames to allow accurate photometry. The positions of the
stars were reduced to the astrometric system of the HST
Guide Star Catalog and proved, at the telescope, to be very
reliable.

The input list contained over 13,000 stars, the bulk of
which are nonmembers. Given our choice of spectral region,
we restricted our observations to stars on the giant branch.
Our candidates were therefore selected to lie in this region
of the V versus V [I color-magnitude diagram. We
observed M15 during the course of three observing runs,
one each in 1996 May, June, and October. containsTable 1
a log of the observations. The 1996 May run was in a sense
experimental and took place before the full input list was
produced. We only had astrometry from the central
Schmidt frame, as well as the positions of K. CudworthÏs
stars. Because of the restricted region of candidates, we
could only observe D25 stars per Hydra setup. In 1996
June the full list was available, and we observed virtually all
the stars on the giant branch brighter than V \ 15.7 and

2 The WIYN Observatory is a joint facility of the University of Wiscon-
sin, Indiana University, Yale University, and the National Optical
Astronomy Observatories.
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TABLE 1

OBSERVATION LOG

UT Date Total Exposure
Setup ID (1996) (s)

Central 1 . . . . . . May 15 2400
Central 2 . . . . . . May 15 1800
K1 . . . . . . . . . . . . . May 17 4800
K2 . . . . . . . . . . . . . May 19 3000
A . . . . . . . . . . . . . . Jun 19 2100a
B . . . . . . . . . . . . . . . Jun 19 2100a
C . . . . . . . . . . . . . . Jun 22 1800
D . . . . . . . . . . . . . . Jun 22 1800
E . . . . . . . . . . . . . . . Jun 23 1800
F . . . . . . . . . . . . . . . Jun 23 1800
H . . . . . . . . . . . . . . Oct 11 4500
N . . . . . . . . . . . . . . Oct 11 4800
I . . . . . . . . . . . . . . . Oct 12 7200
O . . . . . . . . . . . . . . Oct 12 6000
P . . . . . . . . . . . . . . . Oct 13 11500a
Q . . . . . . . . . . . . . . Oct 14 4811a,b
Q . . . . . . . . . . . . . . Oct 15 6000b
R . . . . . . . . . . . . . . Oct 15 9300

a Observations a†ected by clouds.
b Spectra from both nights combined. Total

exposure time is 10811 s.

outside about 4@. In 1996 October we reobserved all the
known members between 4@and 18@, some of the central
stars, and an additional sample on the giant branch with
15.7\ V \ 16.6 and 4@\ r \ 17@. As the October run prog-
ressed, we performed rough reductions of the spectra to
weed out nonmembers and to obtain additional spectra of
apparent members. displays the distribution ofFigure 1
observed stars in radius and magnitude. The diagram is a
version of a ““ sunÑower ÏÏ plot & McGill(Cleveland 1984).
The number of points on each symbol represents the
number of observations, stars observed once (circles) and

FIG. 1.ÈDistribution of observed stars in radial position and V magni-
tude. The number of points on each symbol represents the number of
observations. A small circle represents a single observation and a diagonal
line represents two observations.

twice (diagonal lines). We obtained, in total, 1132 spectra of
591 stars in the M15 Ðeld. Of these, 230 turned out to be
members. Membership was determined by velocity coher-
ence and the strength of the absorption lines, and will be
discussed further below.

At least one of the stars K144 and K1040 was observed in
each Hydra conÐguration (““ setup ÏÏ). The former proved to
have a variable radial velocity which changed by 1 km s~1
between May and June and 1.4 km s~1 between June and
October. The velocities for K1040 were much more consis-
tent, and its spectrum was used as the template for the
velocity determination by cross-correlation.

2.2. Spectral Reduction
The data were reduced using the DOHYDRA reduction

package in Each observation was accompanied byIRAF.3
one or more 5 minute exposures of an incandescent lamp (a
““ Ñat ÏÏ) taken with the Ðbers in the same conÐguration as the
observations. Generally, setups observed at the ends of the
night had multiple-Ñat exposures, but, because of the over-
head involved with Ñats and especially with reconÐguring
the Ðbers, usually single-Ñat exposures were done. There did
not appear to be any disadvantage to using single expo-
sures, since cosmic rays were not a great problem. The
program exposures and bracketing ThAr lamp exposures
were extracted and then divided by the extracted lamps. No
sky subtraction was required, because of the high dispersion
and the absence of the Moon; all observations were taken
in dark time. The wavelength calibration was accomplished
using 36 comparison lines. The Ðfth-order dispersion solu-
tion generally had rms residuals of less than 10~4 nm, or
0.05 km s~1. During dispersion correction, the spectra were
resampled into 2048 logarithmically spaced bins covering
20.7 nm in total.

Cosmic-ray removal was accomplished through the
simple expedient of using the IRAF CONTINUUM task to
replace with the continuum Ðt all pixels more than 4 p
above the Ðt or 9 p below the Ðt. The latter was necessary
because of the resampling of the spectra during dispersion
correction. The spline interpolation required for resampling
sometimes gave complementary negative spikes around
large cosmic rays. Care was taken not to remove any
genuine absorption lines. Some artiÐcial lines, arising in
resampling but falling under the 9 p limit, may have been
added, but this would not have had a large e†ect on the
resulting velocities, given the large number of real lines
dominating the cross-correlation.

In 1996 May and October, multiple exposures were taken
with each Ðber conÐguration. The resulting spectra were
added together to produce the Ðnal spectra for cross-
correlation. The four exposures in the October ““ Q ÏÏ con-
Ðguration were taken on two consecutive nights because of
clouds, but were nevertheless combined, since the faintest
stars lacked adequate Ñux in either pair. These were Ðrst
shifted by a velocity equivalent to the di†erence in EarthÏs
heliocentric velocity relative to M15 between the two
observations.

3 IRAF is distributed by the National Optical Astronomy Observa-
tories, which are operated by the Association of Universities for Research
in Astronomy, Inc., under cooperative agreement with the National
Science Foundation.
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2.3. Cross-Correlation, V elocity Uncertainties, and the
Zero Point

There were 33 individual exposures of K1040, totaling
over 22 hr of exposure time. These were shifted to remove
small di†erences in the geocentric velocity and were
summed to form the high signal-to-noise ratio template
shown in The stellar velocities were measuredFigure 2.
relative to this template using the cross-correlation tech-
nique of & Davis encoded in the IRAFTonry (1979)
FXCOR task. This computes the cross-correlation function
of the Fourier transforms of the template and stellar
spectra. The shift of the cross-correlation peak from zero
gives the velocity of the program star relative to the tem-
plate. This was computed for all the extracted stellar
spectra. We excluded from further analysis all spectra with
cross-correlation peaks less than 0.2. These spectra had low
signal-to-noise ratios, and the velocities derived were often
obviously due to the selection of chance peaks in the cross-
correlations, since they often yielded velocities of several
thousand km s~1.

The uncertainties in the velocities, were determinedv
v
,

from the ratio, R, of the peak of the cross-correlation func-
tion to the size of the random-noise Ñuctuations. For each
spectrum & Davis The constantv

v
\C/1] R (Tonry 1979).

C depends on the number of resolution elements in the
observation and on the width of the cross-correlation func-
tion. In practice, the value of C is established from the data.
We have used the procedure of Latham, & HazenPryor,

to calculate C. For all stars observed more than once(1988)
in an observing run, we have computed the statistic

v\ *v
[(1] R1)~2] (1 ] R2)~2]1@2 . (1)

After weeding out possible variables, we have 228 pairs of
repeat observations. Using the Bayesian procedure
described in we have calculated the dispersion of the° 3,
distribution of v assuming a zero mean. This yields
C\ 13.1^ 0.5 km s~1, which is the value used in comput-
ing the errors in the velocity tables.

The velocity zero point was established using six high
signal-to-noise ratio exposures of the twilight sky, two
taken in 1996 May and four in 1996 October. The Ðbers in
these exposures had various conÐgurations. The spectra in
these exposures were extracted and wavelength-calibrated
in the usual way, and these individual spectra were cross-
correlated against the K1040 template spectrum. The

FIG. 2.ÈTemplate spectrum used for cross-correlations. This is a com-
bination of 33 individual spectra of K1040 adjusted for heliocentric veloc-
ity di†erences.

average velocity for the spectra in each sky exposure was
calculated. The internal dispersions were between 0.10 and
0.24 km s~1, and the mean error in a single velocity was 0.6
km s~1 using C\ 13.1 km s~1 as above. The di†erence
between the internal dispersion and the individual uncer-
tainties might suggest that the individual errors are over-
estimated. On the other hand, the standard deviation of the
six mean velocities about their mean is 0.5 km s~1, which is
quite consistent with the error estimate. What this indicates
is that while the velocities of the spectra in an exposure can
be measured consistently, there are systematic di†erences
between exposures as well. Since there is agreement between
the standard deviation of the velocities in the six exposures
and the errors of the individual velocities, we can have some
conÐdence that our value for C, and hence for the uncer-
tainties, is correct. This is important for the subsequent
calculation of the cluster velocity dispersion. The zero point
is taken as the unweighted mean of the six mean velocities
and is [99.4^ 0.2 km s~1. The velocity of K1040 itself is
derived in the same way as for the rest of the stars. Its mean
velocity with respect to the template is 0.04^ 0.03 km s~1.

As a Ðnal check we compare our velocities against the
velocities of stars in common with those observed by

et al. and et al. FiguresPeterson (1989) Gebhardt (1997). 3
and compare the velocities of the common stars. There are4
79 stars in common between our data and et al.Peterson

and 42 between our data and et al.(1989) Gebhardt (1997) ;
we have only included the new velocities reported by Geb-
hardt et al. The outlying star in is K673, which isFigure 3
claimed by et al. to be a binary. The Peter-Gebhardt (1994)
son et al. velocity is the most discrepant. Most of the stars in

lying o† of the equality line are noted as beingFigure 4
variable in one of these studies. For four of the Gebhardt et
al. variables, we also have multiple observations, and we
conÐrm three of them. One further possible variable is not
conÐrmed. The apparent zero-point shift is not statistically
signiÐcant for the full sample, but for the nonvariables,
there is a correlation between declination and velocity dif-

FIG. 3.ÈComparison of our velocities with those of et al.Peterson
The star with a large deviation is K673, a probable variable.(1989).
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FIG. 4.ÈComparison of our velocities with the Fabry-Perot velocities
of Gebhardt et al. (1994, 1997).

ference amounting to 5 km s~1 across the Fabry-Perot Ðeld.
Taking this into account, there appears to be a zero-point
di†erence of 0.9 km s~1 between the two data sets. These
di†erences may indicate a systematic problem with the
Fabry-Perot calibration.

Calculation of the mean velocity di†erences for the full
samples of the two comparisons yields dispersions about
the means that are somewhat larger than expected if the
adopted errors in each study are correct. et al.Gebhardt

note that their measurement uncertainties are still(1997)
not fully understood but the et al. uncer-Peterson (1989)
tainties apparently are. Thus, in we show, againstFigure 5
V magnitude, s2 for the two observations with respect to
their mean for the comparison with et al.Peterson (1989)
sample. There is a di†erence in behavior for stars on either
side of V \ 13.3. There appears to be extra variance for the
stars brighter than V \ 13.3. This is probably due to the
velocity ““ jitter ÏÏ observed for stars near the tip of the giant
branch in many clusters & Griffin et al.(Gunn 1979 ; Mayor

Gunn, & Griffin et al.1984 ; Lupton, 1987 ; Pryor 1988).
et al. attribute the excess variance in theirPeterson (1989)

repeat observations to an internal jitter of 0.88 km s~1. The
observations by et al. are generally notGebhardt (1997)
precise enough to see this e†ect. If we restrict our compari-

FIG. 5.ÈFor the stars in common with et al. we showPeterson (1989)
s2 vs. magnitude. Note the extra variance apparent for stars brighter than
V \ 13.3. This can be attributed to the jitter seen in the velocities of bright
giants.

son to stars with V [ 13.3, then the di†erence distribution is
consistent with unit variance. This gives us conÐdence that
our uncertainties have been calculated correctly. The ques-
tion of the ““ jitter ÏÏ will be addressed further in the next
section.

2.4. V elocities
In total we have measured 1132 velocities for 591 stars in

the Ðeld of M15. shows the measured velocitiesFigure 6
plotted against distance from the cluster center. This was
taken to be (J2000.0)a \ 21h29m58s.6, d \]12¡10@1A.0

et al. Generally, the cluster members(Guhathakurta 1996).
stand out quite distinctly from the nonmembers based on
the velocity di†erence of approximately 100 km s~1
between the cluster and the foreground disk stars. We selec-
ted the cluster members by Ðrst excluding all stars with
velocities greater than 40 km s~1 with respect to K1040.
The spectra of all the rest of the stars were examined indi-
vidually to estimate the equivalent widths of the Mg b lines.
These lines are a sensitive luminosity indicator, but less so
as a metallicity indicator allowing us to dis-(Geisler 1981),
tinguish between cluster giants and Ðeld dwarfs. All the
stars with large equivalent widths were rejected as being
Ðeld Population I dwarf stars. A few of the stars in the Ðeld
region, those with the lowest velocities with respect to
K1040, were also examined to check for high-velocity
cluster members as have been seen in 47 Tuc (Meylan,
Dubath, Mayor None were found. We also examined1991).
the spectra of nine stars with velocities greater than 40 km
s~1 with respect to K1040 that K. Cudworth (1996,
private communication) had assigned membership prob-
abilities in excess of 50% based on their proper motions. All
of these had high Mg b equivalent widths. There was also a
population of a dozen stars with velocities signiÐcantly
more negative than that of the cluster. Several of these had
very weak spectra, which precluded estimates of the equiva-
lent widths. Their velocities may be suspect. Most of the
others had equivalent widths larger than the typical

FIG. 6.ÈVelocities for all the stars observed in this study plotted
against their radial positions. The cluster stands out as the clump with
velocity near [107 km s~1. The stars around zero velocity are disk stars,
while the stars with very negative velocities probably belong to the halo.



TABLE 2

MEAN VELOCITES OF MEMBER STARS

R.A. Decl.
(J2000.0) (J2000.0) ID V No. v v

v
P(s2) Other Name Notes

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

21 29 05.12 ]11 59 40.7 9494 14.90 3 [102.91 0.21 0.326
21 29 08.40 ]12 09 12.6 B5 13.57 3 [108.53 0.11 0.004 j
21 29 10.70 ]12 16 37.7 9300 16.44 3 [105.78 0.35 0.249
21 29 12.32 ]12 10 50.6 B6 13.62 4 [112.56 0.07 0.034
21 29 13.02 ]12 11 15.7 C3 14.68 3 [100.86 0.14 0.058
21 29 17.36 ]12 16 37.2 C8 14.79 3 [106.82 0.15 0.272
21 29 20.04 ]12 14 00.6 8940 16.57 3 [105.49 0.54 0.153
21 29 20.93 ]12 13 22.0 8907 15.57 4 [101.43 0.35 0.995
21 29 30.66 ]12 10 38.0 8541 16.08 3 [109.17 0.38 0.697
21 29 30.74 ]12 06 33.3 K12 15.11 4 [106.59 0.23 0.811
21 29 33.10 ]12 12 51.6 K21 15.02 3 [111.60 0.31 0.887
21 29 33.50 ]12 04 56.0 K22 14.51 3 [100.88 0.13 0.649
21 29 34.07 ]11 59 39.4 8335 16.07 4 [109.21 0.24 0.124
21 29 34.60 ]12 03 20.0 K26 15.06 3 [103.53 0.19 0.701
21 29 35.05 ]12 06 04.3 K27 15.21 3 [106.45 0.29 0.032
21 29 35.28 ]12 14 08.9 K29 14.21 3 [108.96 0.13 0.740
21 29 35.84 ]12 08 28.1 K31 15.32 3 [105.15 0.21 0.250
21 29 36.45 ]12 03 55.4 K34 15.63 5 [105.75 0.30 0.497
21 29 37.10 ]12 13 41.3 8195 16.48 2 [107.12 0.92 0.753
21 29 37.15 ]12 08 09.8 8184 16.36 3 [105.33 0.44 0.753
21 29 37.97 ]12 11 58.9 K42 15.23 4 [103.61 0.26 0.100
21 29 39.34 ]12 12 39.4 8062 16.44 3 [105.95 0.48 0.111
21 29 39.39 ]12 18 21.6 8063 15.83 4 [111.22 0.18 0.244
21 29 40.02 ]12 16 00.7 K56 15.49 5 [104.20 0.21 0.902
21 29 40.12 ]12 05 19.6 8005 16.18 3 [102.87 0.62 0.530
21 29 40.16 ]12 08 24.0 8007 16.04 2 [103.32 0.44 0.722
21 29 41.24 ]12 07 20.1 K60 15.30 3 [109.08 0.29 0.525
21 29 41.70 ]12 03 37.8 K62 15.64 3 [108.53 0.38 0.683
21 29 42.54 ]12 07 28.0 7873 16.56 2 [101.71 0.61 0.411
21 29 42.93 ]12 09 54.2 K64 15.25 2 [108.65 0.43 0.253
21 29 43.49 ]12 10 04.1 K66 14.46 3 [104.96 0.14 0.781
21 29 43.56 ]12 15 48.0 K703 14.36 3 [108.25 0.14 0.619
21 29 43.76 ]12 06 16.2 7783 16.52 2 [104.31 0.45 0.622
21 29 43.76 ]12 08 34.0 K69 14.53 1 [101.92 0.56 . . .
21 29 44.62 ]12 07 31.4 K77 13.90 2 [103.74 0.15 0.335
21 29 44.66 ]12 05 08.4 7725 16.44 2 [110.59 0.65 0.338
21 29 44.94 ]12 06 31.0 K81 15.71 4 [102.90 0.40 0.833
21 29 45.78 ]12 08 46.2 K87 13.87 3 [108.52 0.16 0.290
21 29 46.03 ]12 11 32.2 K89 14.56 1 [109.84 0.32 . . .
21 29 46.67 ]12 03 21.4 K92 15.28 4 [106.23 0.23 0.008 v
21 29 46.74 ]12 16 18.4 7586 16.56 3 [113.48 0.51 0.666
21 29 46.84 ]12 11 45.7 K97 15.17 1 [107.47 0.67 . . .
21 29 46.86 ]12 12 58.3 7573 16.11 4 [106.08 0.33 0.142
21 29 46.91 ]12 08 27.3 K95 14.87 1 [109.62 0.97 . . .
21 29 47.35 ]12 09 05.3 K105 15.37 1 [112.63 0.76 . . .
21 29 47.82 ]12 06 44.8 7490 15.90 2 [105.80 0.34 0.588
21 29 47.83 ]12 08 46.1 K114 13.92 2 [112.81 0.11 0.000 v
21 29 47.91 ]12 05 48.9 7483 16.37 2 [112.38 0.48 0.087
21 29 48.50 ]12 20 20.5 7463 16.18 3 [110.71 0.27 0.659
21 29 48.53 ]12 06 44.6 7440 16.50 1 [94.92 1.19 . . .
21 29 48.59 ]12 11 46.4 K129 14.31 2 [101.43 0.29 0.818
21 29 48.69 ]12 06 39.1 7427 15.97 2 [105.16 0.40 0.152
21 29 48.81 ]12 10 25.9 K133 15.17 3 [104.48 0.39 0.072
21 29 49.09 ]12 09 04.4 K136 14.85 1 [109.16 0.50 . . .
21 29 49.67 ]12 09 24.1 K141 14.98 2 [103.25 0.39 0.802
21 29 49.75 ]12 11 06.6 K144 13.09 16 [109.59 0.04 0.000 j
21 29 49.76 ]12 12 30.6 K145 15.39 1 [109.35 0.56 . . .
21 29 49.89 ]12 18 12.9 K153 15.53 4 [110.09 0.24 0.443
21 29 49.91 ]12 08 05.9 K146 13.60 2 [100.53 0.14 0.493
21 29 49.91 ]12 14 07.6 K150 15.53 2 [109.83 0.37 0.771
21 29 50.07 ]12 15 43.1 7328 16.57 2 [105.44 0.55 0.303
21 29 50.10 ]12 07 52.9 K151 15.08 1 [93.86 0.53 . . .
21 29 50.12 ]12 09 34.0 K154 14.92 1 [109.44 0.37 . . .
21 29 50.14 ]12 06 41.4 K152 15.26 1 [100.68 0.67 . . .
21 29 50.24 ]12 09 03.6 K158 14.28 1 [110.49 0.40 . . .
21 29 50.48 ]12 20 18.9 C18 14.91 2 [110.36 0.31 0.755
21 29 51.30 ]12 09 39.2 K181 15.10 1 [92.47 0.96 . . .
21 29 51.39 ]11 56 50.7 7186 15.81 4 [105.83 0.21 0.796
21 29 51.43 ]12 08 11.2 K185 14.56 1 [107.01 0.58 . . .
21 29 51.51 ]12 11 58.4 7204 15.61 2 [111.49 0.39 0.690
21 29 51.61 ]12 12 05.0 K197 15.23 1 [104.18 0.72 . . .
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21 29 51.67 ]12 08 30.8 7179 14.74 1 [114.85 1.07 . . .
21 29 51.81 ]12 14 28.9 7174 15.74 2 [108.32 0.32 0.529
21 29 51.82 ]12 08 56.1 K205 14.93 2 [110.60 0.27 0.489
21 29 51.86 ]12 06 39.5 K202 15.20 1 [98.78 0.57 . . .
21 29 52.27 ]12 19 40.4 C20 15.51 5 [108.66 0.23 0.361
21 29 52.28 ]12 10 52.1 K224 13.39 1 [106.88 0.84 . . .
21 29 52.41 ]12 06 59.2 7108 15.55 1 [110.25 0.93 . . .
21 29 52.41 ]12 07 59.3 K228 15.03 3 [110.57 0.32 0.193
21 29 52.61 ]12 10 44.6 K238 13.24 2 [101.61 0.15 0.129
21 29 52.64 ]12 04 40.6 7081 15.60 3 [108.70 0.28 0.024
21 29 52.72 ]12 11 02.4 K240 12.93 1 [104.35 0.82 . . .
21 29 52.81 ]12 14 16.7 7084 16.54 3 [112.50 0.43 0.224
21 29 53.08 ]12 12 31.8 K255 13.87 1 [101.64 0.28 . . .
21 29 53.11 ]12 11 03.2 K254 13.28 1 [108.34 0.82 . . .
21 29 53.27 ]12 04 21.2 7036 16.34 3 [103.13 0.50 0.398
21 29 53.27 ]12 09 34.7 K260 13.99 1 [97.66 0.77 . . . Geb 1463
21 29 53.54 ]12 09 11.3 K272 13.48 1 [105.41 0.84 . . . Geb 1526
21 29 53.76 ]12 10 21.0 K288 13.71 2 [105.04 0.13 0.043 Geb 1369
21 29 53.80 ]12 09 34.5 K290 13.37 1 [115.94 0.82 . . . Geb 1397
21 29 54.16 ]12 10 55.6 K309 14.95 1 [97.55 0.78 . . . Geb 1490
21 29 54.67 ]12 01 06.7 6921 16.42 3 [106.33 0.38 0.614
21 29 54.69 ]12 08 59.9 K328 13.70 1 [102.09 0.28 . . . Geb 1484
21 29 54.90 ]12 13 23.2 K341 12.86 1 [110.19 0.81 . . .
21 29 54.96 ]12 11 45.4 6914 14.29 2 [124.79 0.39 0.162
21 29 55.01 ]12 02 49.2 K337 14.86 3 [106.93 0.26 0.069
21 29 55.25 ]12 16 08.6 6894 16.41 2 [103.81 0.42 0.042
21 29 55.32 ]12 15 05.9 6883 15.67 3 [112.49 0.36 0.048
21 29 55.43 ]12 11 04.9 K373 12.88 1 [96.51 0.84 . . . Geb 1443
21 29 55.56 ]12 09 07.4 K383 13.82 1 [95.51 0.68 . . . Geb 1347
21 29 55.57 ]12 12 42.9 K387 13.53 1 [111.31 0.87 . . .
21 29 55.59 ]12 10 46.2 K386 12.80 2 [118.54 0.08 0.063 Geb 1266
21 29 55.61 ]12 11 43.1 6852 15.62 2 [106.72 0.35 0.479
21 29 55.69 ]12 11 34.5 K393 13.31 1 [96.59 0.84 . . .
21 29 55.72 ]12 07 59.7 6838 15.66 1 [99.92 0.70 . . .
21 29 55.87 ]12 09 33.2 K406 13.81 1 [109.98 0.31 . . . Geb 1048
21 29 56.14 ]12 10 18.4 K421 12.71 2 [111.04 0.09 0.000 Geb 847 j
21 29 56.15 ]12 12 34.5 K431 13.08 2 [107.20 0.12 0.016
21 29 56.26 ]12 09 55.0 K435 13.50 1 [95.86 0.82 . . . AC 529
21 29 56.35 ]12 14 45.9 6791 16.35 2 [106.27 0.67 0.611
21 29 56.41 ]12 10 30.0 K447 13.25 2 [106.08 0.11 0.882 Geb 945
21 29 56.53 ]12 11 56.8 K460 15.18 1 [95.42 0.58 . . .
21 29 56.63 ]12 09 47.0 K462 12.90 2 [116.16 0.11 0.000 AC 13 j
21 29 56.67 ]12 14 36.3 6763 16.18 3 [105.35 0.76 0.095
21 29 56.69 ]12 13 11.3 K476 14.67 2 [108.90 0.26 0.026
21 29 56.76 ]12 10 27.5 K479 12.68 1 [119.92 0.84 . . . Geb 824
21 29 56.99 ]12 09 38.2 K490 12.84 2 [92.94 0.08 0.000 AC 463 j
21 29 57.02 ]12 08 53.7 K488 13.46 2 [104.11 0.12 0.775 Geb 1376
21 29 57.11 ]12 04 22.8 K486 15.49 3 [106.89 0.28 0.931
21 29 57.36 ]12 10 38.5 K511 13.10 2 [102.12 0.09 0.000 AC 808 j
21 29 57.40 ]12 08 22.1 K506 14.77 1 [103.30 0.49 . . .
21 29 57.76 ]12 09 28.6 K531 13.05 2 [95.95 0.11 0.011 Geb 792
21 29 57.98 ]12 14 26.9 K553 14.96 3 [109.76 0.24 0.584
21 29 58.00 ]12 11 54.9 K550 15.12 1 [109.59 0.58 . . .
21 29 58.25 ]12 08 10.1 K560 14.27 2 [99.28 0.22 0.749
21 29 58.27 ]12 04 33.7 6607 16.41 2 [103.49 0.54 0.000 v
21 29 58.29 ]12 09 13.4 K567 13.25 2 [94.57 0.14 0.000 Geb 1087 j
21 29 58.31 ]12 09 46.6 K570 13.05 b [86.05 0.82 . . . AC 411
21 29 58.35 ]12 10 42.2 K578 13.72 1 [102.03 0.50 . . . Geb 968
21 29 58.53 ]12 09 22.0 K583 12.83 2 [108.12 0.09 0.000 Geb 924 1
21 29 58.56 ]12 08 08.6 K582 14.48 1 [98.66 0.46 . . .
21 29 58.68 ]12 08 56.7 K589 13.45 1 [110.75 0.83 . . . Geb 1315
21 29 58.70 ]12 08 32.9 K592 14.05 1 [98.43 0.38 . . . Geb 1539
21 29 58.77 ]12 09 56.8 AC 111 13.33 1 [114.98 0.84 . . .
21 29 58.81 ]12 10 17.9 AC 761 13.45 1 [109.12 0.83 . . .
21 29 59.28 ]12 09 12.3 K634 12.81 2 [103.16 0.12 0.334 Geb 1141
21 29 59.42 ]12 08 36.1 K647 13.60 1 [115.93 0.22 . . . Geb 1529
21 29 59.75 ]12 11 00.5 K670 13.13 1 [103.32 0.83 . . . Geb 1295
21 29 59.78 ]12 11 11.4 K672 13.84 1 [108.28 0.30 . . . Geb 1420
21 29 59.80 ]12 09 26.4 K673 13.17 2 [112.18 0.11 0.006 Geb 972 j
21 29 59.85 ]12 12 29.6 K682 15.32 2 [112.15 0.40 0.944
21 29 59.95 ]12 06 27.3 K677 15.09 2 [103.25 0.36 1.000
21 30 00.00 ]12 13 40.4 K691 14.65 3 [109.31 0.23 0.453
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21 30 00.24 ]12 09 41.6 K706 13.03 2 [116.33 0.14 0.000 Geb 809 b
21 30 00.24 ]12 14 25.7 K714 15.23 3 [105.09 0.44 0.583
21 30 00.30 ]12 10 51.4 K702 12.99 2 [115.51 0.15 0.065 Geb 1241
21 30 00.34 ]12 07 37.1 K709 13.69 2 [99.33 0.13 0.493
21 30 00.54 ]12 10 04.8 K733 13.30 1 [115.54 0.82 . . . AC 11
21 30 00.58 ]12 10 02.1 K734 13.26 1 [117.59 0.85 . . . AC 650
21 30 00.59 ]12 10 06.4 K735 13.73 1 [98.93 0.31 . . . AC 651
21 30 00.63 ]12 22 33.2 6442 16.49 3 [114.86 0.40 0.094
21 30 00.87 ]12 08 57.8 K757 12.88 2 [112.59 0.12 0.110 Geb 1423
21 30 01.08 ]12 07 15.8 K769 15.59 2 [103.38 0.80 0.003 v
21 30 01.11 ]12 12 18.0 K776 15.46 2 [99.58 0.39 0.693
21 30 01.60 ]12 12 30.8 K800 14.71 1 [104.52 0.44 . . .
21 30 02.22 ]12 11 22.4 K825 12.81 12 [99.03 0.05 0.000 b
21 30 02.60 ]11 56 51.3 6246 16.49 3 [111.11 0.47 0.801
21 30 02.70 ]12 10 44.5 K853 12.88 2 [108.33 0.17 0.860 Geb 1454
21 30 02.73 ]12 06 56.6 K846 14.06 1 [104.68 0.20 . . .
21 30 02.75 ]12 11 28.5 6256 15.55 1 [105.60 0.66 . . .
21 30 02.86 ]12 10 08.9 K863 13.92 1 [106.85 0.33 . . . Geb 1340
21 30 03.06 ]12 10 22.4 K866 14.70 1 [107.66 0.63 . . . Geb 1415
21 30 03.14 ]12 13 29.5 K875 14.18 2 [110.55 0.20 0.964
21 30 03.45 ]12 10 04.7 K884 14.17 1 [120.62 0.40 . . . Geb 1439
21 30 03.47 ]12 03 13.1 K879 14.20 3 [103.52 0.21 0.203
21 30 03.97 ]12 08 58.5 K902 14.89 2 [107.61 0.23 0.127
21 30 04.07 ]12 07 27.7 K906 15.19 1 [105.57 0.46 . . .
21 30 04.18 ]12 08 28.3 K912 14.45 1 [100.34 0.38 . . .
21 30 04.28 ]12 10 56.8 K919 13.60 1 [111.86 0.34 . . .
21 30 04.58 ]12 08 54.4 K925 14.55 1 [108.67 0.66 . . .
21 30 04.59 ]12 10 33.4 K928 13.92 1 [105.06 0.17 . . .
21 30 04.62 ]12 07 41.2 K926 15.25 2 [105.89 0.57 0.110
21 30 04.71 ]12 09 32.4 6080 13.90 1 [104.21 0.22 . . .
21 30 04.71 ]12 11 10.9 K932 14.09 1 [107.16 0.29 . . .
21 30 04.77 ]12 11 47.6 K934 14.47 1 [101.43 0.65 . . .
21 30 04.81 ]12 11 07.6 K936 14.23 1 [112.87 0.29 . . .
21 30 05.15 ]12 13 21.0 K947 14.37 1 [116.89 0.30 . . .
21 30 05.50 ]12 08 56.0 K954 14.40 1 [104.68 1.08 . . .
21 30 05.51 ]12 11 05.8 K956 14.54 1 [117.23 0.40 . . .
21 30 05.54 ]12 07 06.0 K953 15.40 2 [110.33 0.39 0.207
21 30 05.82 ]12 01 13.1 K957 13.87 4 [109.04 0.10 0.535
21 30 06.23 ]11 56 47.8 5934 15.71 4 [109.39 0.30 0.877
21 30 06.33 ]12 07 00.0 K969 13.54 2 [110.64 0.13 0.402
21 30 06.57 ]12 09 22.9 K973 15.42 1 [98.92 0.36 . . .
21 30 06.93 ]12 07 47.3 K979 14.26 2 [111.08 0.50 0.752
21 30 06.95 ]12 09 17.2 K981 15.25 1 [106.40 0.91 . . .
21 30 07.26 ]12 10 51.5 K989 15.15 2 [109.87 0.34 0.417
21 30 07.31 ]12 09 38.5 K990 13.84 2 -110.25 0.16 0.867
21 30 07.36 ]12 10 33.7 K993 14.04 3 [113.93 0.16 0.339
21 30 07.46 ]12 08 14.3 K994 13.91 3 [112.04 0.15 0.539
21 30 07.99 ]12 12 55.1 K1006 14.27 2 [113.61 0.17 0.332
21 30 08.23 ]12 04 08.9 5778 16.41 3 [107.46 0.50 0.718
21 30 08.91 ]12 08 49.9 K1014 14.78 1 [114.94 0.36 . . .
21 30 09.52 ]12 04 57.9 5668 16.31 4 [108.27 0.41 0.193
21 30 09.68 ]12 13 43.2 K1029 13.57 2 [101.97 0.18 0.542
21 30 09.76 ]12 12 55.1 K1030 14.23 3 [100.69 0.12 0.115
21 30 09.86 ]12 10 53.2 K1033 14.41 2 [110.57 0.22 0.213
21 30 10.40 ]12 11 49.6 5612 15.12 2 [113.53 0.54 0.391
21 30 10.47 ]12 10 07.0 K1040 13.46 17 [99.36 0.03 0.000 j
21 30 10.48 ]12 15 54.8 5613 16.26 3 [114.50 0.42 0.306
21 30 10.55 ]12 14 12.1 K1042 15.44 4 [108.92 0.32 0.932
21 30 11.20 ]12 14 20.8 5555 15.84 2 [110.51 0.92 0.000 v
21 30 11.27 ]12 01 49.3 K1049 14.65 4 [106.10 0.13 0.560
21 30 11.35 ]12 08 42.1 K1054 14.24 1 [106.63 0.41 . . .
21 30 11.60 ]12 14 06.5 5523 15.64 3 [107.97 0.30 0.484
21 30 12.00 ]12 04 23.7 5479 16.08 3 [105.03 0.62 0.773
21 30 14.23 ]12 09 24.4 K1069 14.61 2 [102.23 0.28 0.254
21 30 14.68 ]12 12 11.8 K1071 15.59 3 [108.17 0.27 0.272
21 30 14.71 ]12 08 25.0 K1070 15.36 3 [103.30 0.37 0.171
21 30 15.19 ]12 19 46.9 5304 15.64 3 [103.75 0.32 0.705
21 30 15.20 ]12 11 35.4 K1074 15.26 5 [106.96 0.16 0.063
21 30 15.54 ]12 05 12.0 K1076 15.48 4 [106.97 0.34 0.715
21 30 15.62 ]12 08 23.8 K1079 14.18 3 [105.22 0.13 0.562
21 30 15.75 ]12 17 00.4 K1083 15.45 3 [105.92 0.26 0.046
21 30 16.04 ]12 13 35.0 K1084 14.51 3 [104.17 0.14 0.725
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21 30 16.65 ]12 09 09.8 5205 16.48 2 [110.00 0.79 0.879
21 30 17.30 ]12 06 04.9 5168 16.20 3 [108.13 0.42 0.450
21 30 18.11 ]12 09 15.9 5138 15.62 4 [106.80 0.38 0.581
21 30 20.34 ]12 11 34.3 5044 16.53 2 [105.71 0.53 0.670
21 30 21.00 ]12 13 01.5 K1097 15.50 3 [109.15 0.26 0.654
21 30 22.49 ]12 14 23.2 K1104 15.56 5 [108.89 0.26 0.625
21 30 22.68 ]12 18 00.4 K1106 14.70 2 [106.45 0.34 0.944
21 30 25.55 ]12 17 06.0 4796 15.84 3 [109.32 0.30 0.458
21 30 26.77 ]12 07 04.8 4724 16.22 3 [104.27 0.50 0.676
21 30 29.64 ]12 20 11.8 B18 13.96 3 [105.98 0.17 0.878
21 30 31.75 ]12 08 55.7 K1136 14.85 3 [104.56 0.22 0.917
21 30 32.48 ]12 07 54.8 4483 15.97 4 [105.99 0.45 0.233
21 30 44.10 ]12 11 23.5 B30 13.75 4 [104.26 0.10 0.096
21 30 49.26 ]12 07 32.1 C35 15.11 5 [109.43 0.24 0.609
21 30 54.39 ]12 07 11.5 3599 16.49 4 [103.63 0.42 0.620

NOTES.È(b) : Star remains variable if jitter of 0.8 km s~1 is included ; (j) Star is not variable if jitter of 0.8 km s~1 is
included ; (v) variable star fainter than jitter limit.

member ; these are probable nonmembers. These have all
been rejected from the cluster sample. These may be fore-
ground halo dwarfs. There were also a few stars with veloci-
ties consistent with being cluster members, but the spectra
were too poor to estimate the equivalent width. These have
not been used in the subsequent analysis.

In we have listed the stars deemed to be membersTable 2,
sorted by increasing right ascension. The Ðrst two columns
are our coordinates for the stars with epoch J2000.0.
Column (3) contains an identiÐcation to ease cross compari-
sons. For the stars from the CudworthÏs preliminary
proper-motion list, we have used his identiÐcations from

& Cordoni orKu� stner (1921), Aurière (1981), Sandage
These can also be used for cross-identiÐcation with(1970).

et al. For the rest of the stars we have usedPeterson (1989).
our own numbering from our master list of candidates.
Further identiÐcation numbers for cross-referencing with

et al. are in the penultimate column.Gebhardt (1997)

FIG. 7.ÈVelocity curves for the standard stars K1040 and K144 and for
the suspected variable star K825. The errors shown do not include an
allowance for jitter.

Column (4) is a V magnitude. The remaining columns are
the number of observations for each star, the mean veloci-
ties, the uncertainties in the velocities (exclusive of the
uncertainty in the velocity zero point), and for each star
with more than one observation, the probability that the s2
of the di†erences of the observed velocities about their
mean is consistent with no variability. The Ðnal column
contains any notes. The velocities of the nonmembers are
available from the authors.

We have compared our coordinates with the high-
precision astrometry of the inner 2@ of M15 by Campion,Le
Colin, & Ge†ert We Ðnd mean o†sets (in the sense(1996).

Campion et al. andours[ Le 1996) S*aT \[0A.68 ^ 0A.23
S*dT \ Since their typical error is around0A.80 ^ 0A.22.

our relative astrometry is good to about The0A.07, 0A.2.
mean o†sets represent di†erences in the astrometric systems
used in the studies. We use the HST Guide Star Catalog as

FIG. 8.ÈVelocities of the members of M15 plotted against radius. The
velocity dispersion decreases as expected with radius until about 7@. The
velocity dispersion then appears to increase again. The point at negative
radius indicates the inferred mean and its uncertainty. In this case the
probability distribution is symmetric.
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TABLE 3

REPEAT OBSERVATIONS OF POSSIBLE VARIABLES

JD v v
v

JD v v
v

K92: K825 :
2,450,218.892 . . . . . . [105.87 0.43 2,450,218.962 . . . . . . [99.64 0.15
2,45,0220.927 . . . . . . [109.69 1.07 2,450,220.927 . . . . . . [99.54 0.10
2,450,222.931 . . . . . . [105.77 0.57 2,450,222.931 . . . . . . [101.95 0.22
2,450,371.704 . . . . . . [106.26 0.32 2,450,253.857 . . . . . . [100.24 0.24

K114 : 2,450,253.924 . . . . . . [100.28 0.23
2,450,218.962 . . . . . . [113.65 0.25 2,450,256.877 . . . . . . [100.13 0.29
2,450,371.704 . . . . . . [112.62 0.12 2,450,256.935 . . . . . . [100.02 0.19

6607 : 2,45,0367.633 . . . . . . [97.67 0.15
2,450,368.778 . . . . . . [95.41 1.02 2,450,367.782 . . . . . . [97.52 0.18
2,450,371.704 . . . . . . [104.70 0.64 2,450,368.778 . . . . . . [97.76 0.18

K583 : 2,450,369.603 . . . . . . [97.83 0.16
2,450,253.857 . . . . . . [111.97 0.30 2,450,370.753 . . . . . . [98.01 0.18
2,450,371.704 . . . . . . [107.77 0.09 5555 :

K706 : 2,450,368.778 . . . . . . [98.71 1.78
2,450,256.877 . . . . . . [118.13 0.22 2,450,371.704 . . . . . . [114.86 1.08
2,450,368.778 . . . . . . [115.12 0.18

K769 :
2,450,256.935 . . . . . . [107.14 1.49
2,450,371.704 . . . . . . [101.88 0.94

our reference, while Campion et al. use the FK5Le (1996)
system. The positions in the tables do not include the o†set.
The zero point for our photometry has been determined by
comparing stars that appear in our list and that of Cud-
worth, and shifting our magnitudes onto his system.

There are 17 stars in our member sample for which the
probability of no velocity variability is less than 1%. Of
these stars, 12 are in the upper 1 mag interval of the giant
branch, here for V \ 13.6, where it has long been suspected
that the stars are subject to an intrinsic ““ jitter ÏÏ in their
velocities of around 0.8 km s~1 & Griffin(Gunn 1979 ;

et al. et al. et al.Mayor 1984 ; Lupton 1987 ; Pryor 1988).
These include the two stars that we took as our velocity
standards, K144 and K1040. Velocity curves for these two
stars, plus K825, are shown in Both show system-Figure 7.
atic variations between runs, but the velocities are consis-
tent if a further 0.8 km s~1 is allowed in the uncertainties.
There are another 12 stars with two observations, six of
these are at two epochs, which do not show any sign of this
jitter. So it is unclear whether all bright giants su†er from
this or what the timescale is of this variation. If we add 0.8
km s~1 in quadrature to the errors for all stars with
V \ 13.6, then three of these stars remain Ñagged as vari-
ables. These are marked by the note ““ b ÏÏ in ThoseTable 2.
with now-consistent velocities are marked ““ j.ÏÏ The other
Ðve stars are fainter than this limit and have the note ““ v.ÏÏ
We provide the full set of velocities for the stars with ““ b ÏÏ
and ““ v ÏÏ Ñags in The star K673, which was claimedTable 3.
to be a binary by et al. only appears to beGebhardt (1994),
variable if the jitter is not included. The two observations in
1996 June and October di†er by 0.8 km s~1. Of the eight
stars we identify as velocity variables, six have only two
observations, four of which are at two epochs. The star 5555
has a velocity di†erence of 16 km s~1 over a span of 3 days ;
star 6607 changes by 4.3 km s~1 over the same interval. The
most extensive set of observations is for the star K825,
which was noted to be variable in our 1996 May run. We
present the velocity curve in Most remarkable is aFigure 7.
2.4 km s~1 velocity change over the course of 2 days in our
May observing run.

We will refer to the velocities without including the jitter
factor as our ““ A ÏÏ sample. This consists of 213 nonvariables

and 17 variables. If we include the 0.8 km s~1 jitter factor in
the velocity uncertainties of all the bright stars, then this
““ B ÏÏ sample consists of 222 nonvariables and eight vari-
ables. Only the nonvariables in each sample will be used in
estimating the mean, velocity dispersion proÐle, and rota-
tion. In the analysis below we will use the A sample ; the B
sample yields very similar results.

displays our velocities plotted against radius.Figure 8
What is most striking is the apparent increase in the veloc-
ity dispersion beyond about 5@. We will discuss this point in

using the methods described in° 4 ° 3.

3. BAYESIAN ESTIMATION

3.1. Introduction
We have a sample of velocities for members of the cluster,

each with its own uncertainty. What we wish to measure are
the mean velocity of the cluster and the velocity dispersion
proÐle. The mean must be based on all the velocities, but
the velocity dispersion needs to be measured as a function
of radius, e.g., in radial bins. In addition, we often want to
know whether the observations indicate rotation and
whether the rotation signal is signiÐcant. There are several
approaches of increasing complexity that can be used to
make these various measurements.

et al. used the simplest approach to cal-Peterson (1989)
culating the mean and simply took an unweighted average
of their 120 stellar velocities and derived the uncertainty
from the scatter about the mean. This overstates the uncer-
tainty, since it will also include the unknown velocity dis-
persion of the cluster. They determined the velocity
dispersion proÐle by dividing the sample into bins and
taking the dispersion about the mean of the velocities in
that bin as the local velocity dispersion. Again, the known
and variable uncertainties in the velocities are ignored. Fur-
thermore, the estimate of the cluster velocity based on the
entire sample has also been ignored in determining the local
velocity dispersion. The fractional error in the velocity dis-
persions was just taken as (2N)~1@2 for a bin of N stars.

A more sophisticated approach is the maximum likeli-
hood method described by & Meylan ThisPryor (1993).
assumes that the velocity for each star is drawn from a
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normal distribution with the standard deviation being the
quadrature sum of the individual velocity uncertainty and
the cluster velocity dispersion. Standard maximum likeli-
hood techniques result in equations for the mean and dis-
persion, which can then be solved numerically. &Pryor
Meylan also give equations for the variances of the(1993)
derived quantities.

Another algorithm that has been used to measure the
velocity dispersion proÐle utilizes the locally weighted
scatter plot smoothing (LOWESS) algorithm &(Cleveland
McGill First the cluster mean is estimated by some1984).
other method. Then the velocity variance at each data point
is estimated according to the application of this algorithm
by et al. The squared deviations from theGebhardt (1994).
cluster mean are calculated. Then, at each radius for which
one wants to measure the dispersion, one proceeds as
follows : (1) A straight line is Ðtted to these deviations as a
function of radial position by weighted least squares. The
weights are the inverse squares of the di†erences of the stars
in radial position, measured from the cluster center, with
respect to the dispersion radius. (2) The square root of the
Ðtted variance is taken as the velocity dispersion at that
radius. The uncertainties in the velocity dispersions are cal-
culated using a Monte Carlo method that assumes that the
LOWESS dispersions are correct, but using the observed
velocity uncertainties for individual stars. While this
method does yield a nonparametric estimate of the velocity
dispersion proÐle, it su†ers from calculating the mean and
dispersions separately and from ignoring the measurement
errors in calculating the velocity dispersion. Thus, all veloci-
ties carry equal weight and the measurement of the velocity
dispersion can be biased by single, highly uncertain points
with large deviations. To some extent this will be compen-
sated for in estimating the uncertainty in the velocity disper-
sions, and more recent applications of the method have
included the velocity uncertainty in the weighting (K. Geb-
hardt, 1997 private communication), but the robustness of
this method has not been demonstrated.

Looking at the maximum likelihood method from
another perspective brings us to the Bayesian methods we
employ here. The results are generally similar to those
achieved with maximum likelihood, but there are several
advantages. The Bayesian methods give probability dis-
tributions for the parameters, not just the most likely value
and its variance. The Bayesian methods naturally incorpor-
ate any prior information on the values to be measured and
also give the relative likelihood of various models. Thus, for
example, we can decide whether a model including rotation
is more or less likely than one without.

For discussions of the background of Bayesian analysis,
we refer the reader to andBretthorst (1988) Press (1989).
The classic source is presentsJe†reys (1961). Jaynes (1983)
this material from a more modern perspective. & Wil-Saha
liams have used these methods in a somewhat di†er-(1994)
ent astronomical context.

In short, if we know the conditional probability of A
given B, P(A oB), then we can infer P(B oA) using BayesÏs
theorem,

P(B oA)\ P(A oB)P(B)
P(A)

. (2)

In P(B) is referred to as the prior probability orequation (2),
the prior. It represents any information we have on the

values of the parameters before we look at our data. P(A oB)
is the likelihood. P(B oA) is the posterior probability ; it is this
that we are seeking to measure. The Ðnal factor, P(A), is
called the global likelihood and is a normalization factor.

A and B can represent data, models, model parameters,
and so on. In a Bayesian framework, the probabilities rep-
resent our state of knowledge. This is unlike the more fam-
iliar ““ frequentist ÏÏ viewpoint, which considers probabilities
to be just the frequency with which something occurs. Here
it is perfectly meaningful to discuss the probability of the
parameters of a model having particular values. It is just as
meaningful to compare the probability of two models. The
question is not, ““ How often will such a model occur? ÏÏ but
rather ““ Given the previously known information and the
data, what is the probability that this model is correct? ÏÏ
The prior represents our state of knowledge before making
the observation. We may know nothing at all, in which case
we would wish to choose as uninformative a prior as pos-
sible. Alternatively, we may have previous measurements
that we are trying to reÐne. In this case, the proper prior is
one that represents the previous measurements. We will see
examples of both of these kinds of prior below. The appen-
dices to contain some useful comments onBretthorst (1988)
the choice of priors.

If we have two di†erent models, and and we wishM1 M2,
to choose between them, then the natural thing to look at is
the posterior odds ratio

P(M1 oD)
P(M2 oD)

\ P(D oM1)P(M1)
P(D oM2)P(M2)

, (3)

where D is the data. If the number or nature of the param-
eters in the two models di†er, it is important to keep all the
normalization terms in the priors and likelihoods. If the
odds ratio is greater than unity, then model is favored ;M1otherwise, model is more likely. This will be used inM2discussing rotating and nonrotating models for the M15
data.

Since the notion of a posterior odds ratio is unfamiliar,
we feel that some further discussion is warranted to give a
proper understanding of our results. Assume that

and are the probability distributionsP1(M1 oD) P2(M2 oD)
for the values of two parameters, and given theM1 M2,data, and further, assume that they are normal distributions
with means and dispersions where i \ 1, 2. We cank

i
p
i
,

calculate the probabilities that or thatM1[ M2 M1 \M2and hence the odds of the two propositions. DeÐne k 4
Then the odds of over(k1[ k2)/(p12 ] p22)1@2. M1[ M2areM1\M2

[1] erf (k/J2)]/[1[ erf (k/J2)] .

If then k \ 0 and the odds are even ; the two pro-k1\ k2,positions are equally likely. For k \ 1, a 1 p result, the odds
are 5.3 to 1. That is, based on our prior knowledge and this
data set, it is 5.3 times more likely that thanM1[ M2If is 2 p larger than the odds ofM1\M2. k1 k2, M1[ M2over are 43 to 1. Similarly, k \ 3 gives odds ofM1 \M2740 to 1. If a horse in a race has odds of 5 to 1 against its
winning, you would not be surprised if it won. Similarly, if
the posterior odds are 5 to 1 against being larger thanM2you would not be surprised if it really was larger. InM1,general, we do not think of a 1 p result as being overly
signiÐcant. If the odds were 740 to 1, we would be surprised
if the horse won or if, with additional data, proved to beM2larger than But we are similarly surprised if a 3 p resultM1.
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proves to be wrong. Nonetheless, it can be, and long shots
do sometimes win.

3.2. V elocity Models and Priors
Here we will look at several models for a globular cluster

data sample, with di†erent assumptions about the form of
the velocity dispersion proÐle and about whether the cluster
is rotating. The Ðrst pair of models assumes a single mean
velocity for the sample and then individual velocity disper-
sions for groups of stars binned by radius. The sizes of the
bins are variable ; we assume only that the velocity disper-
sion is the same for all stars in that radial bin. In e†ect, we
assume that the velocity dispersion can be approximated by
a series of step functions. This is a general assumption of
binning. First we will consider a model without rotation.

The data sample consists of N stellar velocities eachv
i
,

with uncertainty The model parameters are the meanv
i
.

velocity and the set of velocity dispersions for the r \ 1,v6 p
r. . ., M radial bins. For a single observation, we assume that

the likelihood of observing is given byv
i

P(v
i
o v6 , p

r
, v

i
) \ 1

J2n(v
i
2] p

r
2)

exp
C
[ (v

i
[ v6 )2

2(v
i
2] p

r
2)
D

. (4)

The likelihood of the whole data set D is

P(D o v6 , Mp
r
N, Mv

i
N) \ <

i
P(v

i
o v6 , p

r
, v

i
) . (5)

Applying yieldsequation (2)

P(v6 , Mp
r
N oD, Mv

i
N) P P(D o v6 , Mp

r
N, Mv

i
N)P(v6 ) <

r
P(p

r
) (6)

for the posterior probability. We have ignored the normal-
ization factor P(D), as we will only be concerned with the
relative probabilities of various parameter combinations
and, for di†erent models of the same data, P(D) is constant.

and are the priors for the mean velocity and theP(v6 ) P(p
r
)

velocity dispersion values. If we know nothing about the
mean velocity, then the appropriate prior to use is a
uniform prior. In one sense, this is a somewhat unusual
probability distribution in that it is not normalizable. In
practice, this is not usually a problem. If we have a previous
observation of the mean then we could use av6 0^ p

Ë0
,

normal distribution

P(v6 )\ 1

J2np
Ë0

exp
C
[ (v6 [ v6 0)2

2p
Ë0
2
D

(7)

for the prior. The appropriate uninformative prior for a
scale parameter such as the velocity dispersion is thep

rprior (for a justiÐcation, seeJe†reys (1961) p
r
~1 Bretthorst

1988).
An alternative model is one which allows for rotation in

the data in addition to the mean and dispersion as in the
previous model. One simple model is to assume a sinusoidal
dependence of rotation velocity on azimuthal angle with a
single position angle and amplitude A. We replace/0withequation (4)

P(v
i
, /

i
o v6 , p

r
, /0, A, v

i
) \ 1

J2n(v
i
2] p

r
2)

] exp
A
[ Mv

i
[ [v6 ] A sin (/

i
[ /0)]N2

2(v
i
2] p

r
2)

B
, (8)

where is the position angle for observation i. The poste-/
irior probability is then

P(v6 , Mp
r
N, /0, A oD, Mv

i
N) P P(D o v6 , Mp

r
N, /0, A, Mv

i
N)

] P(v6 )P(/0)P(A) <
r

P(p
r
) . (9)

The appropriate choice for the new priors is discussed in
Based on his discussion, we useBretthorst (1988).

P(/0)P(A) \ 1
2nd2 exp

A
[ A2

2d2
B

. (10)

The pseudodispersion d is a hyperparameter. This is a case
in which we cannot use an improper, i.e., nonnormalizable,
prior, as we want to compare the probabilities of the model
with and without rotation. The other parameters with
improper priors are common to both models, so their nor-
malization divides out. The rotation parameters are only in
one model, and so their normalization must be taken into
account for a proper comparison. We can see in the raw
data below) that any rotation for M15 must be(Fig. 12
small. This sets a limit on d. The value we choose for d
expresses our estimate of the maximum amplitude of the
rotation ; the greater a value we assign to d, the larger the
rotation signal must be to be considered signiÐcant with
respect to the model without rotation.

As an alternative to a step function for the velocity dis-
persion proÐle, we can consider a power-law form:

p(r) \ p0 ra . (11)

This is still parametric, but does away with binning. The
likelihood for a single observation is now

P(v
i
o v6 , p0, a, v

i
) \ 1

J2n(v
i
2 ] p02 r2a)

] exp
C
[ (v

i
[ v6 )2

2(v
i
2] p02 r2a)

D
, (12)

and the posterior probability is

P(v6 , p0, a oD, Mv
i
N)P P(D o v6 , p0, a, Mv

i
N)P(v6 )P(p0)P(a) .

(13)

The new priors are given by the Je†reys priorP(p0) \ p0~1,
referred to above, and

P(a)\ 1

J2nc
exp

C
[ (a [ a0)2

2c2
D

. (14)

As in and c are hyperparameters. Theoryequation (10), a0suggests and we take c\ 1. The extension to thea0\ [0.5,
rotating case is straightforward.

3.3. Metropolis Algorithm
We calculate the posterior probability distributions using

the Metropolis algorithm and follow the procedure in Saha
& Williams The basic algorithm is as follows : We(1994).
will refer to a set of parameters as -. (1) Start with some
values of the parameters - and calculate the posterior prob-
ability P(- oD). (2) Pick at random from a uniform distribu-
tion a possible change d- in the parameters and compute
P(-] d- oD). (3) If P(-] d- oD) [ P(- oD), then replace -
with -] d- for the next iteration. If not, replace - with
-] d- with probability P(-] d- oD)/P(- oD). (4) Return
to step 2 and iterate. The size of the trial changes must be
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large enough to ensure that the entire range of acceptable
values of the parameters are covered, but be small enough
that sufficient iterations accept change. Given enough iter-
ations, the distribution of accepted values for the param-
eters converges into the posterior probability distribution.

In principle, we should save each set of parameters to
look at the full, multivariate distribution, but this would
require too much memory and require too many iterations
if the number of parameters is much larger than two. What
we have done instead is to save the distribution of each
parameter individually. This is equivalent to projecting the
multivariate distribution along the axis of each parameter,
that is, simultaneously calculating all the marginal prob-
ability distributions. Our estimator for each parameter is
then the mode of the individual probability distribution.
The posterior probability of the model is given by the
overall probability using these estimators of the modes.
With some multivariate probability distributions, it is pos-
sible for the peaks of the projected distributions to be sig-
niÐcantly di†erent from the global peak of the distribution.
To help guard against this, we also keep track during the
iterations of the individual parameter sample giving the
highest posterior probability. In general, this set of param-
eters was close to, but not identical with, the modes of the
individual distributions ; the posterior probabilities were
similar. In practice, the distributions from our data sets are
unimodal and strongly peaked, indicating that the modes of
the projected distributions do represent fairly the peak of
the multivariate distribution.

These projected posterior probability distributions for
the various parameters were measured by counting the
number of accepted parameter values on a grid. For a
parameter x, is the probability of x being betweenP

i
*x x

iand where the are the grid points. We calculatex
i
] *x, x

ithe mode of P(x oD) by Ðnding the maximum value of atP
i
,

e.g., and then using it and the two bracketing values tox
j
,

Ðnd the parabola y(x) for which for/
xi
xi`*x y(x)dx \ P

i
*x

each of i \ j [ 1, j, j ] 1. The maximum of y(x) is taken as
the mode of the distribution. Using this interpolation form,
the mode lies at

x \ x
j~1 ] 2P

j~1[ 3P
j
] P

j`1
P

j~1[ 2P
j
] P

j`1
*x . (15)

The number of iterations and the grid spacings for each
parameter were chosen to ensure a smooth, well-sampled
distribution. Generally we used of order 106 samples to
derive the posterior distributions.

3.4. Examples
We conclude this discussion with a couple of examples to

demonstrate this method. For our Ðrst example, we draw a
sample of stars with the radii and errors of our ““ A ÏÏ sample.
The velocities are drawn from a distribution with a mean
velocity of [107 km s~1 and with a velocity dispersion
proÐle that decreases linearly to 6@, and then is constant
beyond that, similar to the observed velocity dispersion
proÐle. We then use the same parameters as in to analyze° 4
this sample. The results are shown in The dottedFigure 9.
line is the assumed proÐle. The estimates of the velocity
dispersions are displayed in two ways on this diagram:
points with error bars and sideways histograms represent-
ing the probability distribution ; the former displays the
values in a traditional manner. The data points represent
the mode of the distribution as discussed in The error° 3.3.

FIG. 9.ÈVelocity dispersion proÐle for the Ðrst example. The assumed
velocity dispersion proÐle is shown as the dotted line. The histograms (turn
the Ðgure sideways) show the probability distributions for the velocity
dispersion at that radius having the given value. The probability distribu-
tions are o†set to have their zero levels at the mean radius of the star in the
bin. This is the same position as the vertical line of the error bars for the
accompanying points. The points represent the modes of the probability
distribution and the error bars the symmetric region containing 68.5% of
the probability. These can be thought of as 1 p error bars. Note that the
probability distribution is really asymmetric ; it is skewed to higher velocity
dispersions. There is good agreement between the assumed proÐle and the
estimated proÐle from the artiÐcial data.

bars represent the symmetric region about the mode over
which the integrated probability is 0.685. Thus, they are
equivalent to 1 p errors. Note, however, that a symmetric
probability integral is only one way of selecting the error
region. Any contiguous region containing 68.5% of the
probability would be equivalent. The agreement of the
derived velocity dispersion proÐle with that assumed is
quite satisfactory, and the inferred mean velocity is
[107.0^ 0.3 km s~1.

For our second example, we draw the stars as before but
also assume the entire cluster is rotating with amplitude 2
km s~1 and a position angle of 180¡. We analyzed this result
with both the rotating and nonrotating models. The rota-
tion is estimated to have an amplitude of 1.7 ^ 0.5 km s~1
and position angle 176¡ ^ 19¡. The mean is [106.7^ 0.3
km s~1. These all agree with the input model. The velocity
dispersion proÐle is shown in There is generalFigure 10.
agreement between the estimates of the velocity dispersion
and the assumed values. The model including rotation is a
more likely Ðt to the data, with odds of 10 to 1 in favor of
rotation. This is only marginally signiÐcant, as the data do
not strongly support an interpretation of rotation. The sixth
point may appear to be too low, but full consideration of
the statistics indicates that this is not the case. The advan-
tage of having the full probability distribution becomes
apparent if we consider the odds ratio for this point to be
greater or less than the assumed value at that radius. If we
naively ignore the asymmetry and assume the probability
distribution to have the mean and standard deviation
shown, the di†erence is 2.5 p, and the odds against the true
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FIG. 10.ÈVelocity dispersion proÐle for the second example. The
assumed velocity dispersion proÐle is shown as the dotted line. The curves
and points are as described in except that we also show the modeFig. 9,
and error bars for the solution without rotation. These are o†set to the left.

value being higher than the assumed value are 173 to 1. If
we use the measured probability distribution, the odds are
only 31 to 1, 5.5 times less unlikely, and equivalent to a 1.3 p
di†erence for normally distributed errors.

4. KINEMATICS

4.1. V elocity Dispersion ProÐle
We now apply to our observations the methods discussed

in We begin by assuming that the cluster is not rotating.° 3.
We divide the A sample into seven bins of 26 stars each and
an outermost bin of 31 stars, and run it through the Bayes-
ian analyzer. The resulting mean velocity is [106.9^ 0.3
km s~1, assuming a uniform prior and [107.3^ 0.2 km
s~1 if we use the et al. mean and uncer-Gebhardt (1997)
tainty ([107.8^ 0.3 km s~1) as the prior. Our result in the
latter case is just the average of the two measurements,
exactly as we would have expected. The probability dis-
tribution of the mean velocity is well represented by a
normal distribution with the quoted mean and dispersion.

illustrates the resulting velocity dispersionFigure 11
proÐle in the outer part of the cluster. If we use the B sample
and just add the ““ jitter ÏÏ stars into the same radial bins, the
results are much the same. The points and curves are as
described for the examples in the previous section. The
modes and the size of the symmetric error region are listed
in The radius given in the leftmost column is justTable 4.
the mean radius of the stars in the bin. The histograms give
the actual probability distributions for each velocity disper-
sion. These can be seen more clearly by turning the Ðgure
sideways. The zero level for the probability for each bin is
the mean radius of the stars in the bin as represented by the
vertical stroke of the error bars. It is clear that the probabil-
ity distributions are skewed in all cases to higher velocity
dispersions. It is more likely that the true dispersion is
higher, rather than lower, than the mode. This is easy to
understand. It is always possible that the observed sample

FIG. 11.ÈInferred velocity dispersion proÐle assuming no rotation. The
curves and points are as described in Fig. 9.

of stars lacks stars with large velocity di†erences from the
mean, even if the underlying velocity distribution allows for
such values. On the other hand, the stars with the largest
velocity deviations in the sample put a much stronger lower
limit on the velocity dispersion.

With the exclusion of the point at 4@, the velocity disper-
sion decreases with radius up to 5@. Beyond this radius, the
modes of the distributions increase again, conÐrming what
is seen in the raw velocities. Since we have computed the
probability distributions, it is straightforward to calculate
the probability that one point is larger than another, or,
alternatively, the odds. The probability that the last point is
higher than the next-to-last point is 67%, i.e., the odds are
roughly 2 to 1 in favor of the last point being higher. For the
last point and the point at 5@, the probability that the last is
larger is 74%, giving odds of 2.8 to 1. (For an explanation of
these odds ratios, see While intriguing, these results° 3.1.)
do not in themselves argue strongly for an increase in the
velocity dispersion.

4.2. Rotation
It could be argued that the increase in the velocity disper-

sion is the result of di†erences in the velocity tensor with

TABLE 4

VELOCITY DISPERSION PROFILE

p (km s~1)
RADIUS

(arcmin) No Rotation Rotation

0.83 . . . . . . . 8.1^ 1.2 7.8^ 1.1
1.64 . . . . . . . 6.1^ 0.9 5.8^ 0.9
2.23 . . . . . . . 6.3^ 1.0 6.5^ 0.9
3.04 . . . . . . . 4.5^ 0.7 4.5^ 0.7
4.00 . . . . . . . 4.7^ 0.7 4.2^ 0.6
5.14 . . . . . . . 2.9^ 0.4 3.0^ 0.5
6.86 . . . . . . . 3.0^ 0.5 2.8^ 0.4
10.94 . . . . . . 3.2^ 0.5 3.3^ 0.4
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radius. If the velocities are strongly tangentially anisotropic,
the projected velocity dispersion would be higher than if the
velocities are isotropically distributed. We discuss the case
against tangential anisotropy in but since rotation has° 5,
been claimed in the past for M15, here we look further at
the special case of rotation. et al. Ðnd rota-Gebhardt (1997)
tion with an amplitude of 2.1 ^ 0.4 km s~1 and position
angle 107¡ ^ 10¡ for their overall They also looksample.4
at the variation with radius and Ðnd changes in both the
amplitude and position angle.

Before continuing on to look for rotation in our sample,
we need to address the question of ““ perspective rotation ÏÏ
arising from the proper motion of M15. This is discussed by

Thackeray, & Wesselink and more speciÐcallyFeast, (1961)
with respect to u Centauri by Meylan, & MayorMerritt,

Simply put, the projection of the clusterÏs space(1997).
velocity along the lines of sight to various parts of the
cluster results in an apparent rotation of the cluster, increas-
ing with distance from the cluster center and varying
inversely with the cluster distance. For u Cen, which is at
5.2 kpc and has a total proper motion of (100 yr)~1, the0A.78
perspective rotation is about 1 km s~1 at 20@. M15 is at 10.5
kpc ; the value of its proper motion is disputed. &Cudworth
Hanson measured an absolute proper motion of(1993)

cos (100 yr)~1,ka d \ [0A.03 ^ 0A.10 kd \ [0A.42 ^ 0A.10
(100 yr)~1. et al. measured it to be cosGe†ert (1993) ka(100 yr)~1, (100d \[0A.10 ^ 0A.14 kd \[1A.02 ^ 0A.14
yr)~1. More recently et al. derived a value ofScholtz (1996)

cos (100 yr)~1,ka d \ [0A.01 ^ 0A.04 kd \ ]0A.02 ^ 0A.03
(100 yr)~1. None of these values agree, and the latest is
e†ectively zero. Hence, we will ignore the e†ects of per-
spective rotation here.

If we use the rotating model for the velocities discussed in
assuming a single amplitude and position angle for the° 3.2,

whole sample, then the mean velocity is the same. We have
taken the hyperparameter d (see to be 5 km s~1.° 3.2)
Rotation is detected. The amplitude is 1.5^ 0.4 km s~1 and
the axis of rotation is at 125¡ ^ 19¡. The posterior odds
ratio for a rotating model with respect to a nonrotation
model is 15 to 1, indicating that the rotating model is more
likely. This rotation is displayed in The corre-Figure 12.
sponding velocity dispersion proÐle, corrected for rotation,
is shown in For comparison, the modal values forFigure 13.
the nonrotating analysis are shown as horizontal dashes
o†set to slightly smaller radii. Again, the modes and sizes of
the symmetric error regions are given in Rotation,Table 4.
if present, acts to increase the observed velocity dispersion if
not accounted for. The large decrease in the velocity disper-
sion for the 4@ point indicates that it is the stars at this
radius that are most strongly a†ected by rotation. The dis-
persion at 7@ also decreases somewhat for the rotating
model. The probability that the last point is higher than the
next to last is now 77%, i.e., the odds are roughly 3.3 to 1 in
favor of the last point being higher, somewhat higher than
for the case without rotation. For the last point and the
point at 5@, the probability that the last is larger is now only
65%, giving odds of 1.8 to 1. The velocity dispersion now
appears to reach its minimum closer to 7@, rather than at 5@
as in Figure 11.

et al. deÐne their position angle as the velocity4 Gebhardt (1997)
maximum. We deÐne ours as the rotation axis with the direction deÐned by
right-handed rotation about it. We have subtracted the required 90¡ from
their values to bring the deÐnitions into agreement.

FIG. 12.ÈObserved velocities, less the cluster mean, as a function of
position angle measured eastward from north. The inferred rotation is
shown as the curve. The position angle of the rotation axis is indicated by
the large tick mark. The stars in the 4@ bin, which has the most signiÐcant
rotation, are shown as Ðlled symbols.

Since it has been claimed by et al. thatGebhardt (1997)
the rotation properties change with radius, we have rea-
nalyzed our sample by looking for rotation in each of our
bins separately. We have kept the mean velocity Ðxed at
[106.9 km s~1. The results are shown in UnlikeTable 5.

each bin is analyzed separately in this table. ForTable 4,
each bin, as well as the overall sample analyzed in one bin

FIG. 13.ÈSame as for the velocity dispersion proÐle, butFig. 10
assuming there is rotation. The dispersion values from are shown asFig. 11
tick marks o†set to the left of the new points. Note the decrease in the
dispersion at 4@.
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TABLE 5

RESULTS BY INDIVIDUAL BINS

NO ROTATION ROTATION

RADIUS p p A
(arcmin) (km s~1) (km s~1) (km s~1) / P(rot.)/P(no rot.)

0.83 . . . . . . . 8.2^ 1.2 7.5 ^ 1.1 4.3^ 2.1 141 ^ 34 0.08
1.64 . . . . . . . 6.3^ 0.9 5.9 ^ 1.0 3.1^ 1.9 174 ^ 40 0.07
2.23 . . . . . . . 6.2^ 1.0 6.3 ^ 1.0 \2.4 . . . 0.01
3.04 . . . . . . . 4.5^ 0.7 4.4 ^ 0.7 \2.6 . . . 0.02
4.00 . . . . . . . 4.6^ 0.7 3.9 ^ 0.6 3.3^ 1.2 103 ^ 22 1.2
5.14 . . . . . . . 3.0^ 0.4 3.0 ^ 0.4 \1.1 . . . 0.01
6.86 . . . . . . . 3.0^ 0.5 3.0 ^ 0.4 1.2^ 0.8 106 ^ 47 0.03
10.94 . . . . . . 3.2^ 0.4 3.3 ^ 0.5 \1.1 . . . 0.01

All . . . . . . 5.2^ 0.3 5.1 ^ 0.3 2.0^ 0.5 131 ^ 17 26

(the row marked ““ All ÏÏ), we give the dispersion without
rotation and the dispersion, rotation amplitude, and posi-
tion angle assuming rotation. The Ðnal column gives the
posterior odds ratio in the sense P(rotation oD)/P(no
rotation oD). Values larger than 1 indicate the model with
rotation is more likely. For the bins in which no rotation is
detected, i.e., those with near-zero amplitudes, the errors are
the amplitude at which the integrated probability reaches
0.685, which corresponds to a 1 p upper limit. The only bin
in which there is signiÐcant rotation detected is the one at
4@, as we expected. The stars in this bin are highlighted in

For a di†erent binning, one with six bins alter-Figure 12.
nating with 35 or 36 stars, no single bin shows signiÐcant
rotation individually, yet the combined solution has poste-
rior odds in favor of rotation of 33 to 1.

The proceeding results can be explained as a consequence
of a subset of the observed velocities combining together to
give the rotation signal. These stars are distributed across
many of the bins and, depending on the binning, a given
radial range may or may not show the rotation signal. What
the Bayesian posterior odds ratio gives is the strength with
which one model is preferred over the other. In the last
mentioned case, the rotating model with six bins is 33 times
more likely to be a true description of the data than the
nonrotating model with six bins. Similarly, for the original
eight-bin model, the rotating model is about 15 times more
likely than the nonrotating model. These are the same data ;
why the di†erence? This is a result of the interaction
between the velocities of the stars in each bin and the dis-
persion and overall rotation in the model. Experiments with
selections of radial subsamples show that a group of 32
stars, including all of those in the 4@ bin above, have a strong
probability of rotation. In the six-bin model, these stars are
divided into two bins and are combined with radially adja-
cent stars, which do not support the rotation hypothesis as
strongly. The individual bins do not show high probabilities
of rotation, but the entire sample retains the signal. A recent
Fokker-Planck study of rotating globular clusters shows
that the rotation velocity should peak at an intermediate
radius & Spurzem Since the rotation ampli-(Einsel 1997).
tude is small, we would expect to detect it only where it is
the strongest.

We conclude that our sample supports the view that rota-
tion is present in M15. This rotation appears strongest near
4@, but stars from the entire sample contribute to the signal.
The sample is not large enough to look for radial changes in
the rotation amplitude or position angle in a way indepen-
dent of the binning. The ambiguities introduced by binning,

characteristic of such a parametric approach, suggests that
a nonparametric method would be a better way to resolve
this question. In either case, more data are required.

Even if M15 does rotate, the amplitude is small and little
rotation appears to occur outside 5@, i.e., in the region in
which the velocity dispersion increases. Thus, rotation
cannot explain the increase in the velocity dispersion.

5. DISCUSSION

Our observations of velocities in M15 indicate that the
velocity dispersion reaches a minimum at a radius of
around 7@ and then appears to increase beyond this radius.
Even if it does not increase, and the current data do not
unequivocally require an increase, it is unlikely that the
velocity dispersion continues to decrease at the rate
expected for an isolated cluster. On theoretical grounds, we
would expect the velocity dispersion to decrease with radius
as a power law for an isolated cluster, with ap(r) \ p0 ra,
power-law index close to a \ [0.5.

To test this, we have used the Bayesian algorithm to Ðt a
model assuming a power-law relation for the velocity dis-
persion rather than the step function (i.e., a proÐle that is
constant across each bin) used above. This model is also
discussed in We have excluded the 31 stars in the Ðnal° 3.
bin from the Ðt. For the model without rotation,
a \ [0.46^ 0.08, and for the model with rotation,
a \ [0.48^ 0.08. In both cases, For the 31 starsp0\ 7.7.
in the Ðnal bin, we calculated the posterior probabilities for
the single-dispersion and power-law models, and hence the
posterior odds ratio. Both without and with rotation, the
dispersion calculated by the step-function model is favored
for the last bin. The odds against the power-law model are
165 to 1 without rotation and 320 to 1 with rotation.

This Ðnding strongly suggest that there is an external
energy source that heats the outer regions of the cluster and
causes the observed deviation of the velocity dispersion
proÐle from power-law behavior in the outermost part of
the cluster. The most likely and expected energy source is
tidal interaction with the Galaxy. Whether the observed
heating is due to the general Galactic tide or is due to
shocks involving disk or bulge passages is impossible to say,
given the current state of the observations and models.

But is an energy source necessary? While rotation has
been ruled out, it could be argued that unorganized, tangen-
tial anisotropy could produce the observed behavior of the
velocity dispersion. This seems unlikely. hasTonry (1983)
computed the velocity dispersion proÐle for spherical gal-
axies of varying anisotropy. Even for extreme tangential
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anisotropy, there is an increase in the velocity dispersion
only inside the e†ective radius of an r1@4 law. Beyond this
point, the velocity dispersion decreases whatever the degree
of anisotropy. Thus it is difficult to see how tangential
anisotropy can increase the velocity dispersion in the outer-
most region of a globular cluster. Further, modeling of iso-
lated globular clusters clearly demonstrates that the outer
parts of such clusters would be strongly radially anisotropic

& Shull To(Larson 1970 ; Spitzer 1975 ; Cohn 1979).
convert this to tangential anisotropy would require external
forces : those originating with the host galaxy. Thus, the
explanation of tangential anisotropy, even if it could
provide an increase in the velocity dispersion, and TonryÏs
results suggest otherwise, still requires the inÑuence of the
galactic tidal Ðeld to change the orbits of the cluster stars.
To convert radial orbits to circular orbits at the same apo-
center requires energy input, i.e., tidal heating.

The increase in the velocity dispersion that we observe in
the outer part of M15 is qualitatively very similar to that
seen in the models of & Richstone Their resultsAllen (1988).
suggest that the tidal radius should be identiÐed as the
location of the minimum velocity dispersion, at a radius of
7@, which is very di†erent from the 23@ tidal radius measured
by et al. It is premature, however, to drawGrillmair (1995).
Ðrm conclusions, since the theory of tidal heating and
shocking has advanced since & Richstone InAllen (1988).
particular, the recognition of the importance of the second-
order e†ects & Ostriker and the new appre-(Kundic� 1995)
ciation of the limitations of the assumption of adiabatic
invariance require new models. Such mod-(Weinberg 1994)
eling is well within current computational capabilities.

What are required are models that can be compared with
observations. If new models support the idea that the
minimum in the velocity dispersion marks the edge of the
region containing most of the bound stars, then our results
are indeed in contradiction with the analysis of the surface
density proÐle by et al.Grillmair (1995).

Besides new models, additional observations are also
required in order to improve the statistical signiÐcance of
our results and to clarify the role of rotation. We have
observed virtually all the stars on the giant branch brighter
than V \ 16.6 outside the central region and inside 18@.
Below this magnitude, confusion with the Galactic Ðeld
becomes much stronger. Further out, the fraction of
members is similarly lower. While Hydra is an efficient
instrument for observing large numbers of stars, better
selection criteria based on, e.g., metallicity discriminating
photometry using the Washington or DDO systems, are
required. We have made such observations on the Washing-
ton system for the globular cluster M92, resulting in a strik-
ing increase in the fraction of stars in the sample selected for
Hydra observation proving to be members. These observ-
ations will be presented in a future paper.
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